Method Card (方法卡) - Core Idea: Generative models typically sample outputs independently, and recent inference-time guidance and scaling algorithms focus on improving the quality of individual samples. - Venue: www
Discussion (讨论问题) 1. 相比强基线,优势是否稳定显著? 2. 代价/延迟与内存开销如何,复现细节是否充分? 3. 失败模式与局限?可能改进方向? 4. 数据与指标是否充分支撑结论,是否存在偏置/重叠? 5. 是否可迁移到真实应用或边缘设备?
Method Card (方法卡) - Core Idea: Generative models typically sample outputs independently, and recent inference-time guidance and scaling algorithms focus on improving the quality of individual samples. - Venue: www
Discussion (讨论问题) 1. 相比强基线,优势是否稳定显著? 2. 代价/延迟与内存开销如何,复现细节是否充分? 3. 失败模式与局限?可能改进方向? 4. 数据与指标是否充分支撑结论,是否存在偏置/重叠? 5. 是否可迁移到真实应用或边缘设备?
Method Card (方法卡) - Core Idea: Visual diffusion models achieve remarkable progress, yet they are typically trained at limited resolutions due to the lack of high-resolution data and constrained computation resources, hampering their ability to generate high-fidelity images or videos at higher resolutions. - Venue: ICCV 2025
Discussion (讨论问题) 1. 相比强基线,优势是否稳定显著? 2. 代价/延迟与内存开销如何,复现细节是否充分? 3. 失败模式与局限?可能改进方向? 4. 数据与指标是否充分支撑结论,是否存在偏置/重叠? 5. 是否可迁移到真实应用或边缘设备?
Method Card (方法卡) - Core Idea: Visual diffusion models achieve remarkable progress, yet they are typically trained at limited resolutions due to the lack of high-resolution data and constrained computation resources, hampering their ability to generate high-fidelity images or videos at higher resolutions. - Venue: ICCV 2025
Discussion (讨论问题) 1. 相比强基线,优势是否稳定显著? 2. 代价/延迟与内存开销如何,复现细节是否充分? 3. 失败模式与局限?可能改进方向? 4. 数据与指标是否充分支撑结论,是否存在偏置/重叠? 5. 是否可迁移到真实应用或边缘设备?
Method Card (方法卡) - Core Idea: Recent advances in diffusion models have brought remarkable visual fidelity to instruction-guided image editing.
Discussion (讨论问题) 1. 相比强基线,优势是否稳定显著? 2. 代价/延迟与内存开销如何,复现细节是否充分? 3. 失败模式与局限?可能改进方向? 4. 数据与指标是否充分支撑结论,是否存在偏置/重叠? 5. 是否可迁移到真实应用或边缘设备?
Method Card (方法卡) - Core Idea: Recent advances in diffusion models have brought remarkable visual fidelity to instruction-guided image editing.
Discussion (讨论问题) 1. 相比强基线,优势是否稳定显著? 2. 代价/延迟与内存开销如何,复现细节是否充分? 3. 失败模式与局限?可能改进方向? 4. 数据与指标是否充分支撑结论,是否存在偏置/重叠? 5. 是否可迁移到真实应用或边缘设备?
Method Card (方法卡) - Task / Problem: 3D Vision - Core Idea: 3D content generation has recently attracted significant research interest due to its applications in VR/AR and embodied AI.
Discussion (讨论问题) 1. 相比强基线,优势是否稳定显著? 2. 代价/延迟与内存开销如何,复现细节是否充分? 3. 失败模式与局限?可能改进方向? 4. 数据与指标是否充分支撑结论,是否存在偏置/重叠? 5. 是否可迁移到真实应用或边缘设备?
Method Card (方法卡) - Task / Problem: 3D Vision - Core Idea: 3D content generation has recently attracted significant research interest due to its applications in VR/AR and embodied AI.
Discussion (讨论问题) 1. 相比强基线,优势是否稳定显著? 2. 代价/延迟与内存开销如何,复现细节是否充分? 3. 失败模式与局限?可能改进方向? 4. 数据与指标是否充分支撑结论,是否存在偏置/重叠? 5. 是否可迁移到真实应用或边缘设备?
Method Card (方法卡) - Task / Problem: Grounding, 3D Vision - Core Idea: Parametric body models offer expressive 3D representation of humans across a wide range of poses, shapes, and facial expressions, typically derived by learning a basis over registered 3D meshes. - Venue: ICCV 2025
Discussion (讨论问题) 1. 相比强基线,优势是否稳定显著? 2. 代价/延迟与内存开销如何,复现细节是否充分? 3. 失败模式与局限?可能改进方向? 4. 数据与指标是否充分支撑结论,是否存在偏置/重叠? 5. 是否可迁移到真实应用或边缘设备?
Method Card (方法卡) - Task / Problem: Grounding, 3D Vision - Core Idea: Parametric body models offer expressive 3D representation of humans across a wide range of poses, shapes, and facial expressions, typically derived by learning a basis over registered 3D meshes. - Venue: ICCV 2025
Discussion (讨论问题) 1. 相比强基线,优势是否稳定显著? 2. 代价/延迟与内存开销如何,复现细节是否充分? 3. 失败模式与局限?可能改进方向? 4. 数据与指标是否充分支撑结论,是否存在偏置/重叠? 5. 是否可迁移到真实应用或边缘设备?
Method Card (方法卡) - Core Idea: Recent efforts have extended the capabilities of transformers in logical reasoning and symbolic computations.
Discussion (讨论问题) 1. 相比强基线,优势是否稳定显著? 2. 代价/延迟与内存开销如何,复现细节是否充分? 3. 失败模式与局限?可能改进方向? 4. 数据与指标是否充分支撑结论,是否存在偏置/重叠? 5. 是否可迁移到真实应用或边缘设备?
Method Card (方法卡) - Core Idea: Recent efforts have extended the capabilities of transformers in logical reasoning and symbolic computations.
Discussion (讨论问题) 1. 相比强基线,优势是否稳定显著? 2. 代价/延迟与内存开销如何,复现细节是否充分? 3. 失败模式与局限?可能改进方向? 4. 数据与指标是否充分支撑结论,是否存在偏置/重叠? 5. 是否可迁移到真实应用或边缘设备?
Method Card (方法卡) - Task / Problem: Detection - Core Idea: We address the problem of detecting adversarial attacks against cooperative multi-agent reinforcement learning with continuous action space.
Discussion (讨论问题) 1. 相比强基线,优势是否稳定显著? 2. 代价/延迟与内存开销如何,复现细节是否充分? 3. 失败模式与局限?可能改进方向? 4. 数据与指标是否充分支撑结论,是否存在偏置/重叠? 5. 是否可迁移到真实应用或边缘设备?
Method Card (方法卡) - Task / Problem: Detection - Core Idea: We address the problem of detecting adversarial attacks against cooperative multi-agent reinforcement learning with continuous action space.
Discussion (讨论问题) 1. 相比强基线,优势是否稳定显著? 2. 代价/延迟与内存开销如何,复现细节是否充分? 3. 失败模式与局限?可能改进方向? 4. 数据与指标是否充分支撑结论,是否存在偏置/重叠? 5. 是否可迁移到真实应用或边缘设备?
Method Card (方法卡) - Task / Problem: Vision-Language - Core Idea: In recent years, a plethora of open-source foundation models have emerged, achieving remarkable progress in some widely attended fields, with performance being quite close to that of closed-source models.
Discussion (讨论问题) 1. 相比强基线,优势是否稳定显著? 2. 代价/延迟与内存开销如何,复现细节是否充分? 3. 失败模式与局限?可能改进方向? 4. 数据与指标是否充分支撑结论,是否存在偏置/重叠? 5. 是否可迁移到真实应用或边缘设备?
Method Card (方法卡) - Task / Problem: Vision-Language - Core Idea: In recent years, a plethora of open-source foundation models have emerged, achieving remarkable progress in some widely attended fields, with performance being quite close to that of closed-source models.
Discussion (讨论问题) 1. 相比强基线,优势是否稳定显著? 2. 代价/延迟与内存开销如何,复现细节是否充分? 3. 失败模式与局限?可能改进方向? 4. 数据与指标是否充分支撑结论,是否存在偏置/重叠? 5. 是否可迁移到真实应用或边缘设备?
Method Card (方法卡) - Core Idea: We present Waver, a high-performance foundation model for unified image and video generation.
Discussion (讨论问题) 1. 相比强基线,优势是否稳定显著? 2. 代价/延迟与内存开销如何,复现细节是否充分? 3. 失败模式与局限?可能改进方向? 4. 数据与指标是否充分支撑结论,是否存在偏置/重叠? 5. 是否可迁移到真实应用或边缘设备?
Method Card (方法卡) - Core Idea: We present Waver, a high-performance foundation model for unified image and video generation.
Discussion (讨论问题) 1. 相比强基线,优势是否稳定显著? 2. 代价/延迟与内存开销如何,复现细节是否充分? 3. 失败模式与局限?可能改进方向? 4. 数据与指标是否充分支撑结论,是否存在偏置/重叠? 5. 是否可迁移到真实应用或边缘设备?
Method Card (方法卡) - Core Idea: Tool calling has emerged as a critical capability for AI agents to interact with the real world and solve complex tasks.
Discussion (讨论问题) 1. 相比强基线,优势是否稳定显著? 2. 代价/延迟与内存开销如何,复现细节是否充分? 3. 失败模式与局限?可能改进方向? 4. 数据与指标是否充分支撑结论,是否存在偏置/重叠? 5. 是否可迁移到真实应用或边缘设备?
Method Card (方法卡) - Core Idea: Tool calling has emerged as a critical capability for AI agents to interact with the real world and solve complex tasks.
Discussion (讨论问题) 1. 相比强基线,优势是否稳定显著? 2. 代价/延迟与内存开销如何,复现细节是否充分? 3. 失败模式与局限?可能改进方向? 4. 数据与指标是否充分支撑结论,是否存在偏置/重叠? 5. 是否可迁移到真实应用或边缘设备?