arXiv 论文速递

2025-08-22 12:01
Snapshot: 20250822_1201
Scaling Group Inference for Diverse and High-Quality Generation
Authors: Gaurav Parmar, Or Patashnik, Daniil Ostashev, Kuan-Chieh Wang, Kfir Aberman, Srinivasa Narasimhan, Jun-Yan Zhu
Venue: www
First: 2025-08-21T17:59:57+00:00 · Latest: 2025-08-21T17:59:57+00:00
Comments: Project website: https://www.cs.cmu.edu/~group-inference, GitHub: https://github.com/GaParmar/group-inference
Abstract
Generative models typically sample outputs independently, and recent inference-time guidance and scaling algorithms focus on improving the quality of individual samples. However, in real-world applications, users are often presented with a set of multiple images (e.g., 4-8) for each prompt, where independent sampling tends to lead to redundant results, limiting user choices and hindering idea exploration. In this work, we introduce a scalable group inference method that improves both the diversity and quality of a group of samples. We formulate group inference as a quadratic integer assignment problem: candidate outputs are modeled as graph nodes, and a subset is selected to optimize sample quality (unary term) while maximizing group diversity (binary term). To substantially improve runtime efficiency, we progressively prune the candidate set using intermediate predictions, allowing our method to scale up to large candidate sets. Extensive experiments show that our method significantly improves group diversity and quality compared to independent sampling baselines and recent inference algorithms. Our framework generalizes across a wide range of tasks, including text-to-image, image-to-image, image prompting, and video generation, enabling generative models to treat multiple outputs as cohesive groups rather than independent samples.
中文标题/摘要
标题:规模化群体推理以实现多样化和高质量生成
生成模型通常独立采样输出,而近期的推理时引导与扩展算法主要关注提升单个样本的质量。然而在实际应用中,用户常需针对每个提示获取多张图像(如4-8张),独立采样易导致结果冗余,限制用户选择并阻碍创意探索。本研究提出一种可扩展的群体推理方法,同步提升样本组的多样性与质量。我们将群体推理构建为二次整数分配问题:候选输出建模为图节点,通过选择子集优化样本质量(一元项)并最大化群体多样性(二元项)。为显著提升运行效率,我们采用中间预测逐步剪枝候选集,使方法能扩展至大规模候选集。大量实验表明,相较于独立采样基线及近期推理算法,本方法显著提升了群体多样性与质量。该框架可泛化至文本生成图像、图像到图像转换、图像提示及视频生成等广泛任务,使生成模型能将多个输出视为有机整体而非独立样本。
Summary / 总结
Generative models typically sample outputs independently, and recent inference-time guidance and scaling algorithms focus on improving the quality of individual samples.
CineScale: Free Lunch in High-Resolution Cinematic Visual Generation
Authors: Haonan Qiu, Ning Yu, Ziqi Huang, Paul Debevec, Ziwei Liu
Venue: ICCV 2025
First: 2025-08-21T17:59:57+00:00 · Latest: 2025-08-21T17:59:57+00:00
Comments: CineScale is an extended work of FreeScale (ICCV 2025). Project Page: https://eyeline-labs.github.io/CineScale/, Code Repo: https://github.com/Eyeline-Labs/CineScale
Abstract
Visual diffusion models achieve remarkable progress, yet they are typically trained at limited resolutions due to the lack of high-resolution data and constrained computation resources, hampering their ability to generate high-fidelity images or videos at higher resolutions. Recent efforts have explored tuning-free strategies to exhibit the untapped potential higher-resolution visual generation of pre-trained models. However, these methods are still prone to producing low-quality visual content with repetitive patterns. The key obstacle lies in the inevitable increase in high-frequency information when the model generates visual content exceeding its training resolution, leading to undesirable repetitive patterns deriving from the accumulated errors. In this work, we propose CineScale, a novel inference paradigm to enable higher-resolution visual generation. To tackle the various issues introduced by the two types of video generation architectures, we propose dedicated variants tailored to each. Unlike existing baseline methods that are confined to high-resolution T2I and T2V generation, CineScale broadens the scope by enabling high-resolution I2V and V2V synthesis, built atop state-of-the-art open-source video generation frameworks. Extensive experiments validate the superiority of our paradigm in extending the capabilities of higher-resolution visual generation for both image and video models. Remarkably, our approach enables 8k image generation without any fine-tuning, and achieves 4k video generation with only minimal LoRA fine-tuning. Generated video samples are available at our website: https://eyeline-labs.github.io/CineScale/.
中文标题/摘要
标题:CineScale:高分辨率电影级视觉生成的免费午餐
视觉扩散模型虽取得显著进展,但因缺乏高分辨率数据及计算资源受限,通常仅在有限分辨率下训练,制约了生成高保真度图像或视频的能力。近期研究探索了无需调参的策略以释放预训练模型在高分辨率视觉生成中的潜力,但这些方法仍易产生带有重复模式的低质量内容。核心障碍在于模型生成超出训练分辨率的视觉内容时高频信息必然增加,导致误差累积产生不良重复模式。本研究提出CineScale——一种实现更高分辨率视觉生成的新型推理范式。针对两类视频生成架构的不同问题,我们设计了专用变体。与现有局限于高分辨率文生图(T2I)和文生视频(T2V)的基线方法不同,CineScale基于顶尖开源视频生成框架,进一步实现了高分辨率图生视频(I2V)和视频生视频(V2V)的合成。大量实验验证了我们的范式在扩展图像与视频模型高分辨率生成能力方面的优越性。值得注意的是,本方法无需微调即可实现8K图像生成,并通过极少量LoRA微调达成4K视频生成。生成视频样本请访问:https://eyeline-labs.github.io/CineScale/。
Summary / 总结
Visual diffusion models achieve remarkable progress, yet they are typically trained at limited resolutions due to the lack of high-resolution data and constrained computation resources, hampering their ability to generate high-fidelity images or videos at higher resolutions.
Visual Autoregressive Modeling for Instruction-Guided Image Editing
Authors: Qingyang Mao, Qi Cai, Yehao Li, Yingwei Pan, Mingyue Cheng, Ting Yao, Qi Liu, Tao Mei
First: 2025-08-21T17:59:32+00:00 · Latest: 2025-08-21T17:59:32+00:00
Comments: Source codes and models are available at https://github.com/HiDream-ai/VAREdit
Abstract
Recent advances in diffusion models have brought remarkable visual fidelity to instruction-guided image editing. However, their global denoising process inherently entangles the edited region with the entire image context, leading to unintended spurious modifications and compromised adherence to editing instructions. In contrast, autoregressive models offer a distinct paradigm by formulating image synthesis as a sequential process over discrete visual tokens. Their causal and compositional mechanism naturally circumvents the adherence challenges of diffusion-based methods. In this paper, we present VAREdit, a visual autoregressive (VAR) framework that reframes image editing as a next-scale prediction problem. Conditioned on source image features and text instructions, VAREdit generates multi-scale target features to achieve precise edits. A core challenge in this paradigm is how to effectively condition the source image tokens. We observe that finest-scale source features cannot effectively guide the prediction of coarser target features. To bridge this gap, we introduce a Scale-Aligned Reference (SAR) module, which injects scale-matched conditioning information into the first self-attention layer. VAREdit demonstrates significant advancements in both editing adherence and efficiency. On standard benchmarks, it outperforms leading diffusion-based methods by 30\%+ higher GPT-Balance score. Moreover, it completes a $512\times512$ editing in 1.2 seconds, making it 2.2$\times$ faster than the similarly sized UltraEdit. The models are available at https://github.com/HiDream-ai/VAREdit.
中文标题/摘要
标题:视觉自回归建模在指令引导图像编辑中的应用
扩散模型的最新进展为指令引导图像编辑带来了显著的视觉保真度。然而,其全局去噪过程本质上将编辑区域与整个图像上下文纠缠,导致意外的伪修改并削弱对编辑指令的遵循。相比之下,自回归模型通过将图像合成构建为离散视觉标记的序列过程,提供了独特范式。其因果组合机制天然规避了基于扩散方法的遵循难题。本文提出VAREdit——一种将图像编辑重构为下一尺度预测问题的视觉自回归(VAR)框架。通过源图像特征和文本指令的条件化,VAREdit生成多尺度目标特征以实现精确编辑。该范式的核心挑战在于如何有效条件化源图像标记。我们发现最精细尺度的源特征无法有效指导较粗目标特征的预测。为弥合此差距,我们引入了尺度对齐参考(SAR)模块,将尺度匹配的条件信息注入首个自注意力层。VAREdit在编辑遵循度和效率上均取得显著进步,在标准基准测试中,其GPT平衡分数比领先的扩散方法高出30%以上,且完成512×512编辑仅需1.2秒,比同等规模的UltraEdit快2.2倍。
Summary / 总结
Recent advances in diffusion models have brought remarkable visual fidelity to instruction-guided image editing.
SceneGen: Single-Image 3D Scene Generation in One Feedforward Pass
Authors: Yanxu Meng, Haoning Wu, Ya Zhang, Weidi Xie
First: 2025-08-21T17:59:16+00:00 · Latest: 2025-08-21T17:59:16+00:00
Comments: Technical Report; Project Page: https://mengmouxu.github.io/SceneGen
Abstract
3D content generation has recently attracted significant research interest due to its applications in VR/AR and embodied AI. In this work, we address the challenging task of synthesizing multiple 3D assets within a single scene image. Concretely, our contributions are fourfold: (i) we present SceneGen, a novel framework that takes a scene image and corresponding object masks as input, simultaneously producing multiple 3D assets with geometry and texture. Notably, SceneGen operates with no need for optimization or asset retrieval; (ii) we introduce a novel feature aggregation module that integrates local and global scene information from visual and geometric encoders within the feature extraction module. Coupled with a position head, this enables the generation of 3D assets and their relative spatial positions in a single feedforward pass; (iii) we demonstrate SceneGen's direct extensibility to multi-image input scenarios. Despite being trained solely on single-image inputs, our architectural design enables improved generation performance with multi-image inputs; and (iv) extensive quantitative and qualitative evaluations confirm the efficiency and robust generation abilities of our approach. We believe this paradigm offers a novel solution for high-quality 3D content generation, potentially advancing its practical applications in downstream tasks. The code and model will be publicly available at: https://mengmouxu.github.io/SceneGen.
中文标题/摘要
标题:SceneGen:单次前馈传递实现单图像3D场景生成
3D内容生成因其在VR/AR和具身智能领域的应用近期引起广泛研究关注。本研究致力于解决从单张场景图像合成多个3D资产的挑战性任务。具体贡献包括:(i)提出SceneGen新型框架,以场景图像及对应物体掩码为输入,同步生成具有几何结构与纹理的多个3D资产,无需优化过程或资产检索;(ii)设计新型特征聚合模块,在特征提取阶段整合视觉与几何编码器的局部与全局场景信息,结合位置预测头实现单次前馈生成3D资产及其相对空间位置;(iii)展示框架对多图像输入场景的直接扩展能力——尽管仅使用单图像训练,架构设计可提升多输入时的生成性能;(iv)通过大量定量与定性实验验证方法的高效性与强健生成能力。该范式为高质量3D内容生成提供了创新解决方案,有望推动下游任务的实际应用。代码与模型将公开于:https://mengmouxu.github.io/SceneGen
Summary / 总结
3D content generation has recently attracted significant research interest due to its applications in VR/AR and embodied AI.
ATLAS: Decoupling Skeletal and Shape Parameters for Expressive Parametric Human Modeling
Authors: Jinhyung Park, Javier Romero, Shunsuke Saito, Fabian Prada, Takaaki Shiratori, Yichen Xu, Federica Bogo, Shoou-I Yu, Kris Kitani, Rawal Khirodkar
Venue: ICCV 2025
First: 2025-08-21T17:58:56+00:00 · Latest: 2025-08-21T17:58:56+00:00
Comments: ICCV 2025; Website: https://jindapark.github.io/projects/atlas/
Abstract
Parametric body models offer expressive 3D representation of humans across a wide range of poses, shapes, and facial expressions, typically derived by learning a basis over registered 3D meshes. However, existing human mesh modeling approaches struggle to capture detailed variations across diverse body poses and shapes, largely due to limited training data diversity and restrictive modeling assumptions. Moreover, the common paradigm first optimizes the external body surface using a linear basis, then regresses internal skeletal joints from surface vertices. This approach introduces problematic dependencies between internal skeleton and outer soft tissue, limiting direct control over body height and bone lengths. To address these issues, we present ATLAS, a high-fidelity body model learned from 600k high-resolution scans captured using 240 synchronized cameras. Unlike previous methods, we explicitly decouple the shape and skeleton bases by grounding our mesh representation in the human skeleton. This decoupling enables enhanced shape expressivity, fine-grained customization of body attributes, and keypoint fitting independent of external soft-tissue characteristics. ATLAS outperforms existing methods by fitting unseen subjects in diverse poses more accurately, and quantitative evaluations show that our non-linear pose correctives more effectively capture complex poses compared to linear models.
中文标题/摘要
标题:ATLAS:解耦骨骼与形态参数以实现富有表现力的参数化人体建模
参数化人体模型通过基于配准三维网格学习基向量,能够广泛表达不同姿态、体型和面部表情的三维人体表征。然而,现有方法因训练数据多样性不足和建模假设限制,难以捕捉多样体态下的细节变化。传统范式先通过线性基优化体表,再从表面顶点回归内部骨骼关节点,导致骨骼与软组织间存在不良依赖,限制了直接控制身高和骨长的能力。为此,我们提出ATLAS——基于240台同步相机采集的60万次高分辨率扫描构建的高保真人体模型。该方法通过将网格表征锚定在人体骨骼上,显式解耦形态与骨骼基向量,从而增强形态表现力、实现细粒度身体属性定制,以及独立于外部软组织特征的关键点拟合。定量评估表明,ATLAS能更精准地拟合未知对象的多样姿态,其非线性姿态校正比线性模型更能有效捕捉复杂姿态。
Summary / 总结
Parametric body models offer expressive 3D representation of humans across a wide range of poses, shapes, and facial expressions, typically derived by learning a basis over registered 3D meshes.
Discovering Hidden Algebraic Structures via Transformers with Rank-Aware Beam GRPO
Authors: Jaeha Lee, Gio Huh, Ning Su, Tony Yue YU
First: 2025-08-21T17:58:50+00:00 · Latest: 2025-08-21T17:58:50+00:00
Abstract
Recent efforts have extended the capabilities of transformers in logical reasoning and symbolic computations. In this work, we investigate their capacity for non-linear latent pattern discovery in the context of functional decomposition, focusing on the challenging algebraic task of multivariate polynomial decomposition. This problem, with widespread applications in science and engineering, is proved to be NP-hard, and demands both precision and insight. Our contributions are threefold: First, we develop a synthetic data generation pipeline providing fine-grained control over problem complexity. Second, we train transformer models via supervised learning and evaluate them across four key dimensions involving scaling behavior and generalizability. Third, we propose Beam Grouped Relative Policy Optimization (BGRPO), a rank-aware reinforcement learning method suitable for hard algebraic problems. Finetuning with BGRPO improves accuracy while reducing beam width by up to half, resulting in approximately 75% lower inference compute. Additionally, our model demonstrates competitive performance in polynomial simplification, outperforming Mathematica in various cases.
中文标题/摘要
标题:通过具有秩感知束GRPO的Transformer发现隐藏代数结构
近期研究扩展了Transformer在逻辑推理和符号计算方面的能力。本文探讨了其在函数分解背景下进行非线性潜在模式发现的能力,重点关注多元多项式分解这一具有挑战性的代数任务。该问题在科学与工程领域应用广泛,已被证明是NP难问题,需要精确性与洞察力。我们的贡献有三:首先,开发了能精细控制问题复杂度的合成数据生成流程;其次,通过监督学习训练Transformer模型,并在涉及扩展行为和泛化能力的四个关键维度进行评估;第三,提出了束分组相对策略优化(BGRPO),这是一种适用于困难代数问题的秩感知强化学习方法。使用BGRPO进行微调可在将束宽减少多达一半的同时提升准确率,使推理计算量降低约75%。此外,我们的模型在多项式简化方面展现出竞争优势,在多类案例中表现优于Mathematica。
Summary / 总结
Recent efforts have extended the capabilities of transformers in logical reasoning and symbolic computations.
Distributed Detection of Adversarial Attacks in Multi-Agent Reinforcement Learning with Continuous Action Space
Authors: Kiarash Kazari, Ezzeldin Shereen, György Dán
First: 2025-08-21T17:58:36+00:00 · Latest: 2025-08-21T17:58:36+00:00
Comments: Accepted for publication at ECAI 2025
Abstract
We address the problem of detecting adversarial attacks against cooperative multi-agent reinforcement learning with continuous action space. We propose a decentralized detector that relies solely on the local observations of the agents and makes use of a statistical characterization of the normal behavior of observable agents. The proposed detector utilizes deep neural networks to approximate the normal behavior of agents as parametric multivariate Gaussian distributions. Based on the predicted density functions, we define a normality score and provide a characterization of its mean and variance. This characterization allows us to employ a two-sided CUSUM procedure for detecting deviations of the normality score from its mean, serving as a detector of anomalous behavior in real-time. We evaluate our scheme on various multi-agent PettingZoo benchmarks against different state-of-the-art attack methods, and our results demonstrate the effectiveness of our method in detecting impactful adversarial attacks. Particularly, it outperforms the discrete counterpart by achieving AUC-ROC scores of over 0.95 against the most impactful attacks in all evaluated environments.
中文标题/摘要
标题:连续动作空间多智能体强化学习中对抗攻击的分布式检测
本文研究连续动作空间下协作型多智能体强化学习系统对抗攻击的检测问题。提出一种去中心化检测器,仅依赖智能体的局部观测数据,并利用可观测智能体正常行为的统计特征。该检测器采用深度神经网络将智能体正常行为近似为参数化多元高斯分布。基于预测密度函数定义正态性评分并解析其均值与方差特征,进而采用双端CUSUM算法实时检测正态性评分偏离均值的情况,实现异常行为检测。通过在多种多智能体PettingZoo测试环境中对比不同前沿攻击方法的实验表明,本方法能有效检测具有影响力的对抗攻击,尤其在所有测试环境中对最具影响力攻击的AUC-ROC分数均超过0.95,性能显著优于离散动作空间方案。
Summary / 总结
We address the problem of detecting adversarial attacks against cooperative multi-agent reinforcement learning with continuous action space.
Intern-S1: A Scientific Multimodal Foundation Model
Authors: Lei Bai, Zhongrui Cai, Maosong Cao, Weihan Cao, Chiyu Chen, Haojiong Chen, Kai Chen, Pengcheng Chen, Ying Chen, Yongkang Chen, Yu Cheng, Yu Cheng, Pei Chu, Tao Chu, Erfei Cui, Ganqu Cui, Long Cui, Ziyun Cui, Nianchen Deng, Ning Ding, Nanqin Dong, Peijie Dong, Shihan Dou, Sinan Du, Haodong Duan, Caihua Fan, Ben Gao, Changjiang Gao, Jianfei Gao, Songyang Gao, Yang Gao, Zhangwei Gao, Jiaye Ge, Qiming Ge, Lixin Gu, Yuzhe Gu, Aijia Guo, Qipeng Guo, Xu Guo, Conghui He, Junjun He, Yili Hong, Siyuan Hou, Caiyu Hu, Hanglei Hu, Jucheng Hu, Ming Hu, Zhouqi Hua, Haian Huang, Junhao Huang, Xu Huang, Zixian Huang, Zhe Jiang, Lingkai Kong, Linyang Li, Peiji Li, Pengze Li, Shuaibin Li, Tianbin Li, Wei Li, Yuqiang Li, Dahua Lin, Junyao Lin, Tianyi Lin, Zhishan Lin, Hongwei Liu, Jiangning Liu, Jiyao Liu, Junnan Liu, Kai Liu, Kaiwen Liu, Kuikun Liu, Shichun Liu, Shudong Liu, Wei Liu, Xinyao Liu, Yuhong Liu, Zhan Liu, Yinquan Lu, Haijun Lv, Hongxia Lv, Huijie Lv, Qidang Lv, Ying Lv, Chengqi Lyu, Chenglong Ma, Jianpeng Ma, Ren Ma, Runmin Ma, Runyuan Ma, Xinzhu Ma, Yichuan Ma, Zihan Ma, Sixuan Mi, Junzhi Ning, Wenchang Ning, Xinle Pang, Jiahui Peng, Runyu Peng, Yu Qiao, Jiantao Qiu, Xiaoye Qu, Yuan Qu, Yuchen Ren, Fukai Shang, Wenqi Shao, Junhao Shen, Shuaike Shen, Chunfeng Song, Demin Song, Diping Song, Chenlin Su, Weijie Su, Weigao Sun, Yu Sun, Qian Tan, Cheng Tang, Huanze Tang, Kexian Tang, Shixiang Tang, Jian Tong, Aoran Wang, Bin Wang, Dong Wang, Lintao Wang, Rui Wang, Weiyun Wang, Wenhai Wang, Yi Wang, Ziyi Wang, Ling-I Wu, Wen Wu, Yue Wu, Zijian Wu, Linchen Xiao, Shuhao Xing, Chao Xu, Huihui Xu, Jun Xu, Ruiliang Xu, Wanghan Xu, GanLin Yang, Yuming Yang, Haochen Ye, Jin Ye, Shenglong Ye, Jia Yu, Jiashuo Yu, Jing Yu, Fei Yuan, Bo Zhang, Chao Zhang, Chen Zhang, Hongjie Zhang, Jin Zhang, Qiaosheng Zhang, Qiuyinzhe Zhang, Songyang Zhang, Taolin Zhang, Wenlong Zhang, Wenwei Zhang, Yechen Zhang, Ziyang Zhang, Haiteng Zhao, Qian Zhao, Xiangyu Zhao, Xiangyu Zhao, Bowen Zhou, Dongzhan Zhou, Peiheng Zhou, Yuhao Zhou, Yunhua Zhou, Dongsheng Zhu, Lin Zhu, Yicheng Zou
First: 2025-08-21T17:58:00+00:00 · Latest: 2025-08-21T17:58:00+00:00
Abstract
In recent years, a plethora of open-source foundation models have emerged, achieving remarkable progress in some widely attended fields, with performance being quite close to that of closed-source models. However, in high-value but more challenging scientific professional fields, either the fields still rely on expert models, or the progress of general foundation models lags significantly compared to those in popular areas, far from sufficient for transforming scientific research and leaving substantial gap between open-source models and closed-source models in these scientific domains. To mitigate this gap and explore a step further toward Artificial General Intelligence (AGI), we introduce Intern-S1, a specialized generalist equipped with general understanding and reasoning capabilities with expertise to analyze multiple science modal data. Intern-S1 is a multimodal Mixture-of-Experts (MoE) model with 28 billion activated parameters and 241 billion total parameters, continually pre-trained on 5T tokens, including over 2.5T tokens from scientific domains. In the post-training stage, Intern-S1 undergoes offline and then online reinforcement learning (RL) in InternBootCamp, where we propose Mixture-of-Rewards (MoR) to synergize the RL training on more than 1000 tasks simultaneously. Through integrated innovations in algorithms, data, and training systems, Intern-S1 achieved top-tier performance in online RL training.On comprehensive evaluation benchmarks, Intern-S1 demonstrates competitive performance on general reasoning tasks among open-source models and significantly outperforms open-source models in scientific domains, surpassing closed-source state-of-the-art models in professional tasks, such as molecular synthesis planning, reaction condition prediction, predicting thermodynamic stabilities for crystals. Our models are available at https://huggingface.co/internlm/Intern-S1.
中文标题/摘要
标题:Intern-S1:科学多模态基础模型
近年来,开源基础模型大量涌现,在部分广受关注的领域取得显著进展,性能已十分接近闭源模型。然而,在高价值但更具挑战性的科学专业领域,这些领域要么仍依赖专家模型,要么通用基础模型的进展显著滞后于热门领域,远不足以变革科学研究,且开源模型与闭源模型在这些科学领域存在巨大差距。为缩小这一差距并探索迈向通用人工智能(AGI)的下一步,我们推出Intern-S1——一个具备通用理解与推理能力,并能分析多科学模态数据的专业通才模型。Intern-S1是多模态混合专家(MoE)模型,拥有280亿激活参数和2410亿总参数,基于5T token(其中包含超过2.5T科学领域token)进行持续预训练。在后训练阶段,该模型通过InternBootCamp先后进行离线和在线强化学习(RL),我们提出混合奖励机制(MoR)以协同推进超过1000项任务的RL训练。通过算法、数据和训练系统的集成创新,Intern-S1在在线RL训练中达到顶尖性能。在综合评估基准测试中,Intern-S1在开源模型中展现出通用推理任务的竞争优势,并在科学领域显著超越开源模型,在分子合成规划、反应条件预测、晶体热力学稳定性预测等专业任务中超越闭源最先进模型。模型详见:https://huggingface.co/internlm/Intern-S1。
Summary / 总结
In recent years, a plethora of open-source foundation models have emerged, achieving remarkable progress in some widely attended fields, with performance being quite close to that of closed-source models.
Waver: Wave Your Way to Lifelike Video Generation
Authors: Yifu Zhang, Hao Yang, Yuqi Zhang, Yifei Hu, Fengda Zhu, Chuang Lin, Xiaofeng Mei, Yi Jiang, Zehuan Yuan, Bingyue Peng
First: 2025-08-21T17:56:10+00:00 · Latest: 2025-08-21T17:56:10+00:00
Abstract
We present Waver, a high-performance foundation model for unified image and video generation. Waver can directly generate videos with durations ranging from 5 to 10 seconds at a native resolution of 720p, which are subsequently upscaled to 1080p. The model simultaneously supports text-to-video (T2V), image-to-video (I2V), and text-to-image (T2I) generation within a single, integrated framework. We introduce a Hybrid Stream DiT architecture to enhance modality alignment and accelerate training convergence. To ensure training data quality, we establish a comprehensive data curation pipeline and manually annotate and train an MLLM-based video quality model to filter for the highest-quality samples. Furthermore, we provide detailed training and inference recipes to facilitate the generation of high-quality videos. Building on these contributions, Waver excels at capturing complex motion, achieving superior motion amplitude and temporal consistency in video synthesis. Notably, it ranks among the Top 3 on both the T2V and I2V leaderboards at Artificial Analysis (data as of 2025-07-30 10:00 GMT+8), consistently outperforming existing open-source models and matching or surpassing state-of-the-art commercial solutions. We hope this technical report will help the community more efficiently train high-quality video generation models and accelerate progress in video generation technologies. Official page: https://github.com/FoundationVision/Waver.
中文标题/摘要
标题:Waver:以波动方式实现逼真视频生成
我们推出Waver,一个用于统一图像与视频生成的高性能基础模型。该模型能直接生成长度5至10秒、原生分辨率720p的视频,并支持上采样至1080p。通过混合流DiT架构增强模态对齐并加速训练收敛,同时建立全流程数据筛选机制,采用基于MLLM的视频质量模型进行样本过滤。模型在Artificial Analysis平台的T2V和I2V排行榜均位列前三(数据截至2025年7月30日北京时间10时),持续超越开源模型并媲美商业解决方案。我们提供完整训练推理方案以推动视频生成技术发展。
Summary / 总结
We present Waver, a high-performance foundation model for unified image and video generation.
LiveMCP-101: Stress Testing and Diagnosing MCP-enabled Agents on Challenging Queries
Authors: Ming Yin, Dinghan Shen, Silei Xu, Jianbing Han, Sixun Dong, Mian Zhang, Yebowen Hu, Shujian Liu, Simin Ma, Song Wang, Sathish Reddy Indurthi, Xun Wang, Yiran Chen, Kaiqiang Song
First: 2025-08-21T17:55:54+00:00 · Latest: 2025-08-21T17:55:54+00:00
Abstract
Tool calling has emerged as a critical capability for AI agents to interact with the real world and solve complex tasks. While the Model Context Protocol (MCP) provides a powerful standardized framework for tool integration, there is a significant gap in benchmarking how well AI agents can effectively solve multi-step tasks using diverse MCP tools in realistic, dynamic scenarios. In this work, we present LiveMCP-101, a benchmark of 101 carefully curated real-world queries, refined through iterative LLM rewriting and manual review, that require coordinated use of multiple MCP tools including web search, file operations, mathematical reasoning, and data analysis. Moreover, we introduce a novel evaluation approach that leverages ground-truth execution plans rather than raw API outputs, better reflecting the evolving nature of real-world environments. Experiments show that even frontier LLMs achieve a success rate below 60\%, highlighting major challenges in tool orchestration. Detailed ablations and error analysis further reveal distinct failure modes and inefficiencies in token usage, pointing to concrete directions for advancing current models. LiveMCP-101 sets a rigorous standard for evaluating real-world agent capabilities, advancing toward autonomous AI systems that reliably execute complex tasks through tool use.
中文标题/摘要
标题:LiveMCP-101:对支持MCP的智能体在挑战性查询下的压力测试与诊断
工具调用已成为AI智能体与现实世界交互并解决复杂任务的关键能力。虽然模型上下文协议(MCP)为工具集成提供了强大的标准化框架,但在真实动态场景中,衡量AI智能体如何有效利用多样化MCP工具解决多步骤任务的基准测试仍存在显著空白。本研究推出LiveMCP-101基准,包含101个精心筛选的真实世界查询,通过迭代式LLM重写和人工审核优化,要求协调使用包括网络搜索、文件操作、数学推理和数据分析在内的多种MCP工具。此外,我们引入了一种新颖的评估方法,该方法基于真实执行计划而非原始API输出,更能反映现实环境的动态特性。实验表明,即使前沿LLMs的成功率也低于60%,突显了工具协调方面的重大挑战。详细的消融实验和错误分析进一步揭示了不同的故障模式及令牌使用效率低下的问题,为改进现有模型指明了具体方向。LiveMCP-101为评估真实世界智能体能力设立了严格标准,推动通过工具使用可靠执行复杂任务的自主AI系统发展。
Summary / 总结
Tool calling has emerged as a critical capability for AI agents to interact with the real world and solve complex tasks.
History