Scaling Group Inference for Diverse and High-Quality Generation
Authors: Gaurav Parmar, Or Patashnik, Daniil Ostashev, Kuan-Chieh Wang, Kfir Aberman, Srinivasa Narasimhan, Jun-Yan Zhu
Venue: www
First: 2025-08-21T17:59:57+00:00 · Latest: 2025-08-21T17:59:57+00:00
Comments: Project website: https://www.cs.cmu.edu/~group-inference, GitHub:
https://github.com/GaParmar/group-inference
Abstract
Generative models typically sample outputs independently, and recent
inference-time guidance and scaling algorithms focus on improving the quality
of individual samples. However, in real-world applications, users are often
presented with a set of multiple images (e.g., 4-8) for each prompt, where
independent sampling tends to lead to redundant results, limiting user choices
and hindering idea exploration. In this work, we introduce a scalable group
inference method that improves both the diversity and quality of a group of
samples. We formulate group inference as a quadratic integer assignment
problem: candidate outputs are modeled as graph nodes, and a subset is selected
to optimize sample quality (unary term) while maximizing group diversity
(binary term). To substantially improve runtime efficiency, we progressively
prune the candidate set using intermediate predictions, allowing our method to
scale up to large candidate sets. Extensive experiments show that our method
significantly improves group diversity and quality compared to independent
sampling baselines and recent inference algorithms. Our framework generalizes
across a wide range of tasks, including text-to-image, image-to-image, image
prompting, and video generation, enabling generative models to treat multiple
outputs as cohesive groups rather than independent samples.
中文标题/摘要
标题:规模化群体推理:实现多样化与高质量生成
生成模型通常独立采样输出,近期推理时引导与扩展算法主要关注提升单一样本质量。然而在实际应用中,用户常需获取每组提示对应的多个图像(如4-8张),独立采样易导致结果冗余,限制用户选择并阻碍创意探索。本研究提出可扩展的群体推理方法,同步提升样本组的多样性与质量。我们将群体推理构建为二次整数分配问题:候选输出建模为图节点,通过选择子集优化样本质量(一元项)同时最大化群体多样性(二元项)。为显著提升运行效率,采用中间预测逐步剪枝候选集,使方法能扩展至大规模候选集。大量实验表明,相比独立采样基线及近期推理算法,本方法显著提升群体多样性与质量。该框架可泛化至多种任务,包括文本到图像、图像到图像、图像提示及视频生成,使生成模型将多输出视为 cohesive 群体而非独立样本。
Summary / 总结
The motivation is to address the redundancy in independently sampled outputs from generative models, which limits user choice and idea exploration when presented with multiple results per prompt. The method formulates group inference as a quadratic integer assignment problem, selecting a subset of candidate outputs to optimize both quality and diversity, and introduces progressive candidate pruning for scalability. Experimental results demonstrate significant improvements in group diversity and quality across text-to-image, image-to-image, image prompting, and video generation tasks compared to independent sampling and recent inference algorithms.
该研究的动机是解决生成模型独立采样输出导致的冗余问题,这限制了用户在每次提示下获得多个结果时的选择和探索。方法将群体推理构建为二次整数分配问题,通过选择候选输出子集来优化质量和多样性,并采用渐进剪枝以提高可扩展性。实验结果表明,在文本到图像、图像到图像和视频生成等任务中,该方法显著提升了群体多样性和质量,优于独立采样和近期推理算法。
ATLAS: Decoupling Skeletal and Shape Parameters for Expressive Parametric Human Modeling
Authors: Jinhyung Park, Javier Romero, Shunsuke Saito, Fabian Prada, Takaaki Shiratori, Yichen Xu, Federica Bogo, Shoou-I Yu, Kris Kitani, Rawal Khirodkar
Venue: ICCV 2025
First: 2025-08-21T17:58:56+00:00 · Latest: 2025-08-21T17:58:56+00:00
Comments: ICCV 2025; Website: https://jindapark.github.io/projects/atlas/
Abstract
Parametric body models offer expressive 3D representation of humans across a
wide range of poses, shapes, and facial expressions, typically derived by
learning a basis over registered 3D meshes. However, existing human mesh
modeling approaches struggle to capture detailed variations across diverse body
poses and shapes, largely due to limited training data diversity and
restrictive modeling assumptions. Moreover, the common paradigm first optimizes
the external body surface using a linear basis, then regresses internal
skeletal joints from surface vertices. This approach introduces problematic
dependencies between internal skeleton and outer soft tissue, limiting direct
control over body height and bone lengths. To address these issues, we present
ATLAS, a high-fidelity body model learned from 600k high-resolution scans
captured using 240 synchronized cameras. Unlike previous methods, we explicitly
decouple the shape and skeleton bases by grounding our mesh representation in
the human skeleton. This decoupling enables enhanced shape expressivity,
fine-grained customization of body attributes, and keypoint fitting independent
of external soft-tissue characteristics. ATLAS outperforms existing methods by
fitting unseen subjects in diverse poses more accurately, and quantitative
evaluations show that our non-linear pose correctives more effectively capture
complex poses compared to linear models.
中文标题/摘要
标题:ATLAS:解耦骨骼与形态参数以实现富有表现力的参数化人体建模
参数化人体模型通过基于配准三维网格学习基向量,能够广泛表达不同姿态、体型和面部表情的三维人体表征。然而,现有方法因训练数据多样性不足和建模假设限制,难以捕捉多样体态下的细节变化。传统范式先通过线性基优化体表,再从表面顶点回归内部骨骼关节点,导致骨骼与软组织间存在不良依赖,限制了直接控制身高和骨长的能力。为此,我们提出ATLAS——基于240台同步相机采集的60万高分辨率扫描数据构建的高保真人体模型。该方法通过将网格表征锚定于人体骨骼,显式解耦形态与骨骼基向量,从而增强形态表现力、实现细粒度身体属性定制,以及独立于软组织特征的关键点拟合。定量评估表明,ATLAS能更精准地拟合未知对象的多样姿态,其非线性姿态校正比线性模型更能有效捕捉复杂姿态。
Summary / 总结
The motivation behind ATLAS is to overcome limitations in existing parametric human models, which struggle with detailed variations across poses and shapes due to data constraints and modeling assumptions, and which entangle skeletal and surface parameters. The method involves learning a high-fidelity body model from 600k high-resolution scans by explicitly decoupling shape and skeleton bases, grounding the mesh representation in the human skeleton to enhance expressivity and control. Experimental results show that ATLAS fits unseen subjects in diverse poses more accurately than prior methods, with its non-linear pose correctives better capturing complex poses compared to linear models.
针对现有参数化人体模型在捕捉细节形状变化以及骨骼与表面参数耦合问题上的局限性,ATLAS提出了一种新颖方法,通过将网格表示基于人体骨骼来显式解耦形状和骨骼基。该方法利用60万高分辨率扫描进行训练,增强了形状表现力,并允许独立于软组织的细粒度定制和关键点拟合。实验结果表明,ATLAS在不同姿态下对未见过的受试者拟合效果优于现有方法,定量评估显示其非线性姿态校正比线性模型更有效地捕捉复杂姿态。
Intern-S1: A Scientific Multimodal Foundation Model
Authors: Lei Bai, Zhongrui Cai, Maosong Cao, Weihan Cao, Chiyu Chen, Haojiong Chen, Kai Chen, Pengcheng Chen, Ying Chen, Yongkang Chen, Yu Cheng, Yu Cheng, Pei Chu, Tao Chu, Erfei Cui, Ganqu Cui, Long Cui, Ziyun Cui, Nianchen Deng, Ning Ding, Nanqin Dong, Peijie Dong, Shihan Dou, Sinan Du, Haodong Duan, Caihua Fan, Ben Gao, Changjiang Gao, Jianfei Gao, Songyang Gao, Yang Gao, Zhangwei Gao, Jiaye Ge, Qiming Ge, Lixin Gu, Yuzhe Gu, Aijia Guo, Qipeng Guo, Xu Guo, Conghui He, Junjun He, Yili Hong, Siyuan Hou, Caiyu Hu, Hanglei Hu, Jucheng Hu, Ming Hu, Zhouqi Hua, Haian Huang, Junhao Huang, Xu Huang, Zixian Huang, Zhe Jiang, Lingkai Kong, Linyang Li, Peiji Li, Pengze Li, Shuaibin Li, Tianbin Li, Wei Li, Yuqiang Li, Dahua Lin, Junyao Lin, Tianyi Lin, Zhishan Lin, Hongwei Liu, Jiangning Liu, Jiyao Liu, Junnan Liu, Kai Liu, Kaiwen Liu, Kuikun Liu, Shichun Liu, Shudong Liu, Wei Liu, Xinyao Liu, Yuhong Liu, Zhan Liu, Yinquan Lu, Haijun Lv, Hongxia Lv, Huijie Lv, Qidang Lv, Ying Lv, Chengqi Lyu, Chenglong Ma, Jianpeng Ma, Ren Ma, Runmin Ma, Runyuan Ma, Xinzhu Ma, Yichuan Ma, Zihan Ma, Sixuan Mi, Junzhi Ning, Wenchang Ning, Xinle Pang, Jiahui Peng, Runyu Peng, Yu Qiao, Jiantao Qiu, Xiaoye Qu, Yuan Qu, Yuchen Ren, Fukai Shang, Wenqi Shao, Junhao Shen, Shuaike Shen, Chunfeng Song, Demin Song, Diping Song, Chenlin Su, Weijie Su, Weigao Sun, Yu Sun, Qian Tan, Cheng Tang, Huanze Tang, Kexian Tang, Shixiang Tang, Jian Tong, Aoran Wang, Bin Wang, Dong Wang, Lintao Wang, Rui Wang, Weiyun Wang, Wenhai Wang, Yi Wang, Ziyi Wang, Ling-I Wu, Wen Wu, Yue Wu, Zijian Wu, Linchen Xiao, Shuhao Xing, Chao Xu, Huihui Xu, Jun Xu, Ruiliang Xu, Wanghan Xu, GanLin Yang, Yuming Yang, Haochen Ye, Jin Ye, Shenglong Ye, Jia Yu, Jiashuo Yu, Jing Yu, Fei Yuan, Bo Zhang, Chao Zhang, Chen Zhang, Hongjie Zhang, Jin Zhang, Qiaosheng Zhang, Qiuyinzhe Zhang, Songyang Zhang, Taolin Zhang, Wenlong Zhang, Wenwei Zhang, Yechen Zhang, Ziyang Zhang, Haiteng Zhao, Qian Zhao, Xiangyu Zhao, Xiangyu Zhao, Bowen Zhou, Dongzhan Zhou, Peiheng Zhou, Yuhao Zhou, Yunhua Zhou, Dongsheng Zhu, Lin Zhu, Yicheng Zou
First: 2025-08-21T17:58:00+00:00 · Latest: 2025-08-21T17:58:00+00:00
Abstract
In recent years, a plethora of open-source foundation models have emerged,
achieving remarkable progress in some widely attended fields, with performance
being quite close to that of closed-source models. However, in high-value but
more challenging scientific professional fields, either the fields still rely
on expert models, or the progress of general foundation models lags
significantly compared to those in popular areas, far from sufficient for
transforming scientific research and leaving substantial gap between
open-source models and closed-source models in these scientific domains. To
mitigate this gap and explore a step further toward Artificial General
Intelligence (AGI), we introduce Intern-S1, a specialized generalist equipped
with general understanding and reasoning capabilities with expertise to analyze
multiple science modal data. Intern-S1 is a multimodal Mixture-of-Experts (MoE)
model with 28 billion activated parameters and 241 billion total parameters,
continually pre-trained on 5T tokens, including over 2.5T tokens from
scientific domains. In the post-training stage, Intern-S1 undergoes offline and
then online reinforcement learning (RL) in InternBootCamp, where we propose
Mixture-of-Rewards (MoR) to synergize the RL training on more than 1000 tasks
simultaneously. Through integrated innovations in algorithms, data, and
training systems, Intern-S1 achieved top-tier performance in online RL
training.On comprehensive evaluation benchmarks, Intern-S1 demonstrates
competitive performance on general reasoning tasks among open-source models and
significantly outperforms open-source models in scientific domains, surpassing
closed-source state-of-the-art models in professional tasks, such as molecular
synthesis planning, reaction condition prediction, predicting thermodynamic
stabilities for crystals. Our models are available at
https://huggingface.co/internlm/Intern-S1.
中文标题/摘要
标题:Intern-S1:科学多模态基础模型
近年来,众多开源基础模型涌现,在部分广受关注的领域取得显著进展,性能已十分接近闭源模型。然而,在高价值但更具挑战性的科学专业领域,这些领域仍依赖专家模型,或通用基础模型的进展远落后于热门领域,远不足以变革科学研究,且开源模型与闭源模型在这些科学领域存在巨大差距。为缩小这一差距并探索迈向通用人工智能(AGI)的进一步步伐,我们推出了Intern-S1,这是一个具备通用理解与推理能力、专长于分析多科学模态数据的专业通才模型。Intern-S1是一个多模态混合专家(MoE)模型,拥有280亿激活参数和2410亿总参数,基于5T token(其中包含超过2.5T科学领域token)进行持续预训练。在后训练阶段,Intern-S1在InternBootCamp中经历离线及在线强化学习(RL),我们提出混合奖励(MoR)方法以协同推进超过1000项任务的RL训练。通过算法、数据和训练系统的集成创新,Intern-S1在在线RL训练中达到顶尖性能。在综合评估基准测试中,Intern-S1在开源模型中展现出通用推理任务的竞争优势,并在科学领域显著超越开源模型,在分子合成规划、反应条件预测、晶体热力学稳定性预测等专业任务中超越闭源最先进模型。模型详见:https://huggingface.co/internlm/Intern-S1。
Summary / 总结
The motivation behind Intern-S1 is to address the performance gap between open-source and closed-source foundation models in scientific domains, where general models lag significantly, hindering scientific research transformation and progress toward AGI. The method involves building a multimodal Mixture-of-Experts model with 28 billion activated parameters, pre-trained on 5T tokens including substantial scientific data, and enhanced through offline and online reinforcement learning with a proposed Mixture-of-Rewards approach to handle over 1000 tasks simultaneously. Experimental results show that Intern-S1 achieves competitive performance on general reasoning tasks among open-source models and significantly outperforms them in scientific domains, even surpassing state-of-the-art closed-source models in specialized tasks like molecular synthesis planning and crystal stability prediction.
Intern-S1的动机是解决开源与闭源基础模型在科学领域的性能差距问题,这些领域通用模型常落后于专家系统,阻碍科研转型和通用人工智能发展。方法上构建了280亿激活参数的多模态混合专家模型,基于5万亿token(其中超2.5万亿来自科学数据)持续预训练,并通过离线与在线强化学习及混合奖励机制在1000多个任务上微调。实验结果表明,Intern-S1在通用推理任务上达到开源模型领先水平,在科学领域显著优于开源模型,甚至在分子合成规划、晶体稳定性预测等专业任务上超越了最先进的闭源模型。
LiveMCP-101: Stress Testing and Diagnosing MCP-enabled Agents on Challenging Queries
Authors: Ming Yin, Dinghan Shen, Silei Xu, Jianbing Han, Sixun Dong, Mian Zhang, Yebowen Hu, Shujian Liu, Simin Ma, Song Wang, Sathish Reddy Indurthi, Xun Wang, Yiran Chen, Kaiqiang Song
First: 2025-08-21T17:55:54+00:00 · Latest: 2025-08-21T17:55:54+00:00
Abstract
Tool calling has emerged as a critical capability for AI agents to interact
with the real world and solve complex tasks. While the Model Context Protocol
(MCP) provides a powerful standardized framework for tool integration, there is
a significant gap in benchmarking how well AI agents can effectively solve
multi-step tasks using diverse MCP tools in realistic, dynamic scenarios. In
this work, we present LiveMCP-101, a benchmark of 101 carefully curated
real-world queries, refined through iterative LLM rewriting and manual review,
that require coordinated use of multiple MCP tools including web search, file
operations, mathematical reasoning, and data analysis. Moreover, we introduce a
novel evaluation approach that leverages ground-truth execution plans rather
than raw API outputs, better reflecting the evolving nature of real-world
environments. Experiments show that even frontier LLMs achieve a success rate
below 60\%, highlighting major challenges in tool orchestration. Detailed
ablations and error analysis further reveal distinct failure modes and
inefficiencies in token usage, pointing to concrete directions for advancing
current models. LiveMCP-101 sets a rigorous standard for evaluating real-world
agent capabilities, advancing toward autonomous AI systems that reliably
execute complex tasks through tool use.
中文标题/摘要
标题:LiveMCP-101:对支持MCP的智能体在挑战性查询下的压力测试与诊断
工具调用已成为AI智能体与现实世界交互并解决复杂任务的关键能力。虽然模型上下文协议(MCP)为工具集成提供了强大的标准化框架,但在基准测试AI智能体如何在真实动态场景中有效使用多样化MCP工具解决多步骤任务方面存在显著空白。本研究推出LiveMCP-101基准测试,包含101个精心筛选的真实世界查询,通过迭代式LLM重写和人工审核优化,要求协调使用包括网络搜索、文件操作、数学推理和数据分析在内的多种MCP工具。此外,我们引入了一种新颖的评估方法,利用真实执行计划而非原始API输出,更好地反映现实环境的动态特性。实验表明,即使前沿LLMs的成功率也低于60%,突显了工具协调方面的重大挑战。详细的消融实验和错误分析进一步揭示了不同的故障模式和令牌使用效率低下问题,为推进现有模型指明了具体方向。LiveMCP-101为评估真实世界智能体能力设立了严格标准,推动通过工具使用可靠执行复杂任务的自主AI系统发展。
Summary / 总结
Motivated by the need to benchmark AI agents' real-world tool-use capabilities beyond simple API calls, this work introduces LiveMCP-101, a benchmark of 101 complex queries requiring multi-step tool orchestration via the Model Context Protocol. The method involves curating realistic queries through LLM rewriting and manual refinement, and evaluating agents using ground-truth execution plans rather than raw API outputs to better reflect dynamic environments. Experimental results show that even top-performing LLMs achieve below 60% success, with detailed error analysis revealing persistent challenges in tool coordination and token inefficiency.
LiveMCP-101 的动机是解决缺乏基准测试来评估 AI 代理在现实动态场景中使用多样化 MCP 工具解决多步骤任务的能力。该方法包括创建一个包含 101 个需要协调工具使用的真实世界查询的基准,通过 LLM 重写和人工审查进行精炼,并引入一种基于真实执行计划而非原始 API 输出的新颖评估方法。主要实验结果表明,即使是最先进的 LLM 成功率也低于 60%,详细的错误分析揭示了不同的失败模式和令牌使用效率低下,突显了工具编排方面的挑战。